精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+3cost}\\{y=-2+3sint}\end{array}\right.$(t为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m,(m∈R)
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)设圆心C到直线l的距离等于2,求m的值.

分析 (1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可.
(2)直接利用点到直线的距离个数求解即可.

解答 解:(1)消去参数t,得到圆的普通方程为(x-1)2+(y+2)2=9,
由$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m,得ρsinθ-ρcosθ-m=0,
所以直线l的直角坐标方程为:x-y+m=0.
(2)依题意,圆心C(1,-2)到直线l:x-y+m=0的距离等于2,即$\frac{|1-(-2)+m|}{\sqrt{2}}=2$,解得m=-3±2$\sqrt{2}$.

点评 本小题主要考查极坐标与直角坐标的互化、圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小周期和最小值;
(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈$[{\frac{π}{2},π}]$时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是(  )
A.$f({\frac{1}{k}})<\frac{1}{k}$B.$f({\frac{1}{k}})>\frac{1}{k-1}$C.$f({\frac{1}{k-1}})<\frac{1}{k-1}$D.$f({\frac{1}{k-1}})>\frac{k}{k-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(1)求证:GF∥平面ADE;
(2)求平面AEF与平面BEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知符号函数sgnx=$\left\{\begin{array}{l}{1,}&{x>0}\\{0,}&{x=0}\\{-1,}&{x<0}\end{array}\right.$,f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则(  )
A.sgn[g(x)]=sgnxB.sgn[g(x)]=-sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设cn=anbn,n∈N*,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1(-2,0)、F2(2,0)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,P为椭圆上的点,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最大值为2.
(1)求椭圆的方程;
(2)过左焦点的直线l交椭圆于M、N两点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$sinθ=$\frac{4\sqrt{6}}{3}$cosθ,求l的方程(其中∠MON=θ,O为坐标原点)

查看答案和解析>>

同步练习册答案