精英家教网 > 高中数学 > 题目详情
18.阅读如图所示的程序框图,运行相应的程序,则输出i的值为(  )
A.2B.3C.4D.5

分析 模拟执行程序框图,依次写出每次循环得到的i,S的值,当S=0时满足条件S≤1,退出循环,输出i的值为4.

解答 解:模拟执行程序框图,可得
S=10,i=0
i=1,S=9
不满足条件S≤1,i=2,S=7
不满足条件S≤1,i=3,S=4
不满足条件S≤1,i=4,S=0
满足条件S≤1,退出循环,输出i的值为4.
故选:C.

点评 本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是(  )
A.$f({\frac{1}{k}})<\frac{1}{k}$B.$f({\frac{1}{k}})>\frac{1}{k-1}$C.$f({\frac{1}{k-1}})<\frac{1}{k-1}$D.$f({\frac{1}{k-1}})>\frac{k}{k-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知符号函数sgnx=$\left\{\begin{array}{l}{1,}&{x>0}\\{0,}&{x=0}\\{-1,}&{x<0}\end{array}\right.$,f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则(  )
A.sgn[g(x)]=sgnxB.sgn[g(x)]=-sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设cn=anbn,n∈N*,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两定点A(-1,0),B(1,0),若直线l上存在点M,使得|MA|+|MB|=3,则称直线l为“M型直线”,给出下列直线:①x=2;②y=x+3;③y=-2x-1;④y=1;⑤y=2x+3.其中是“M型直线”的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案