精英家教网 > 高中数学 > 题目详情
15.设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,(  )
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m

分析 A根据线面垂直的判定定理得出A正确;
B根据面面垂直的性质判断B错误;
C根据面面平行的判断定理得出C错误;
D根据面面平行的性质判断D错误.

解答 解:对于A,∵l⊥β,且l?α,根据线面垂直的判定定理,得α⊥β,∴A正确;
对于B,当α⊥β,l?α,m?β时,l与m可能平行,也可能垂直,∴B错误;
对于C,当l∥β,且l?α时,α与β可能平行,也可能相交,∴C错误;
对于D,当α∥β,且l?α,m?β时,l与m可能平行,也可能异面,∴D错误.
故选:A.

点评 本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,若$\overrightarrow{b}⊥\overrightarrow{c}$,则实数k的值等于(  )
A.-$\frac{3}{2}$B.-$\frac{5}{3}$C.$\frac{5}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知符号函数sgnx=$\left\{\begin{array}{l}{1,}&{x>0}\\{0,}&{x=0}\\{-1,}&{x<0}\end{array}\right.$,f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则(  )
A.sgn[g(x)]=sgnxB.sgn[g(x)]=-sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设cn=anbn,n∈N*,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=$\frac{2}{3}$,d=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱外接球的表面积为(  )
A.16πB.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f′(x)为f(x)的导函数,若f′(x)存在极小值点x0,则称x0为f(x)的“下凸拐点”.
(1)f(x)=x3的“下凸拐点”为0;
(2)f(x)=ex-$\frac{1}{2}a{x^3}$在区间(0,2)上存在“下凸拐点”,则a的取值范围为$(\frac{e}{3},\frac{{e}^{2}}{3})$.

查看答案和解析>>

同步练习册答案