精英家教网 > 高中数学 > 题目详情
5.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,若$\overrightarrow{b}⊥\overrightarrow{c}$,则实数k的值等于(  )
A.-$\frac{3}{2}$B.-$\frac{5}{3}$C.$\frac{5}{3}$D.$\frac{3}{2}$

分析 由题意可得$\overrightarrow{c}$的坐标,进而由垂直关系可得k的方程,解方程可得.

解答 解:∵$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),
∴$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow{b}$=(1+k,2+k)
∵$\overrightarrow{b}⊥\overrightarrow{c}$,∴$\overrightarrow{b}$•$\overrightarrow{c}$=0,
∴1+k+2+k=0,解得k=-$\frac{3}{2}$
故选:A

点评 本题考查数量积和向量的垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.A∩B=∅C.A$\stackrel{?}{≠}$BD.B$\stackrel{?}{≠}$A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(  )
A.抽签法B.系统抽样法C.分层抽样法D.随机数法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列等式:
1-$\frac{1}{2}$=$\frac{1}{2}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$

据此规律,第n个等式可为$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{2n-1}-\frac{1}{2n}$=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x|-2≤x<2},N={0,1,2},则M∩N=(  )
A.{0}B.{1}C.{0,1,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“对任意x$∈(0,\frac{π}{2})$,ksinxcosx<x”是“k<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,
(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;
(Ⅱ)求三棱锥P-ABC体积的最大值;
(Ⅲ)若BC=$\sqrt{2}$,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个二元码是由0和1组成的数字串${x_1}{x_2}…{x_n}({n∈{N^*}})$,其中xk(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)
已知某种二元码x1x2…x7的码元满足如下校验方程组:$\left\{\begin{array}{l}{x_4}⊕{x_5}⊕{x_6}⊕{x_7}=0\\{x_2}⊕{x_3}⊕{x_6}⊕{x_7}=0\\{x_1}⊕{x_3}⊕{x_5}⊕{x_7}=0\end{array}\right.$
其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,(  )
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m

查看答案和解析>>

同步练习册答案