精英家教网 > 高中数学 > 题目详情

已知函数,()。
(1)设,令,试判断函数上的单调性并证明你的结论;
(2)若的定义域和值域都是,求的最大值;
(3)若不等式恒成立,求实数的取值范围;

(1)证明略
(2)最大值是
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题12分)定义运算:
(1)若已知,解关于的不等式
(2)若已知,对任意,都有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1) 求函数的定义域;
(2) 求证上是减函数;
(3) 求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明上是减函数;
(3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若不等式的解集为求实数的值
(2)在(1)的条件下对一切实数恒成立求实数
取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,且 
(1)判断的奇偶性,并证明;
(2)判断上的单调性,并证明;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图像上点处的切线方程与直线
行(其中),
(I)求函数的解析式; (II)求函数上的最小值;
(III)对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
(1)证明:函数上是减函数,在[,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数是定义域为R的奇函数.
(1)求的值;
(2)若,试判断函数单调性(不需证明)并求不等式的解集;
(3)若上的最小值为,求的值.

查看答案和解析>>

同步练习册答案