精英家教网 > 高中数学 > 题目详情
15.已知f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+$\frac{1}{2}$;
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

分析 (Ⅰ)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.
(Ⅱ)利用(Ⅰ)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.
(Ⅲ)利用导数求函数的最小值,让最小值等于3,解参数a.

解答 解:(Ⅰ)因为f(x)=x-lnx,f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减,
  当1<x≤e时,f'(x)>0,此时函数f(x)单调递增,
所以函数f(x)的极小值为f(1)=1.
(Ⅱ)证明:因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.
又g′(x)=$\frac{1-lnx}{{x}^{2}}$,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.
所以g(x)的最大值为g(e)=$\frac{1}{e}$<$\frac{1}{2}$,所以f(x)min-g(x)max>$\frac{1}{2}$,
所以在(Ⅰ)的条件下,f(x)>g(x)+$\frac{1}{2}$.
(Ⅲ)假设存在实数a,使f(x)=ax-lnx,x∈(0,e],有最小值3,
则f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,
①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,
f(x)min=f(e)=ae-1=3,a=$\frac{4}{e}$,(舍去),此时函数f(x)的最小值不是3.
②当0<$\frac{1}{a}$<e时,f(x)在(0,$\frac{1}{a}$]上单调递减,f(x)在($\frac{1}{a}$,e]上单调递增.
所以f(x)min=f($\frac{1}{a}$)=1+lna=3,a=e2,满足条件.
③当$\frac{1}{a}$≥e时,f(x)在(0,e]上单调递减,
f(x)min=f(e)=ae-1=3,a=$\frac{4}{e}$,(舍去),
此时函数f(x)的最小值是3,
综上可知存在实数a=e2,使f(x)的最小值是3.

点评 本题主要考查利用函数的单调性研究函数的单调性问题,运算量较大,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|MA|,若$\frac{|MA|}{|AF|}$=2,则|AF|等于(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知θ是第四象限,且$sin(θ+\frac{π}{4})=\frac{5}{13}$,则$tan(θ-\frac{π}{4})$=-$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,FD⊥平面ABCD,$FD=\sqrt{3}$.
(I)求证:EF∥平面ABCD;
(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1,l2,l1交抛物线C于点A,B,l2交抛物线C于点G,H,则$\overrightarrow{AG}$•$\overrightarrow{HB}$的最小值是(  )
A.8B.8$\sqrt{2}$C.16D.16$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(x-$\frac{1}{\sqrt{x}}$)n的展开式中,所有二项式系数之和为512,则展开式中x3的系数为126(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为$\frac{1}{2}$,C、D两辆汽车每天出车的概率均为$\frac{2}{3}$,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
车牌尾号0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正方体ABCD-A1B1C1D1的棱长为1,P是A1C1上任意一点,记平面PAB、平面PBC与下底面所成的二面角分别为α,β,则tan(α+β)的最小值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-a)e1-x,g(x)=f(x)+ae1-x-a(x-1).
(1)讨论f(x)的单调性;
(2)当a=1时,求g(x)在($\frac{3}{4}$,2)上的最大值;
(3)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λg′(x1),求实数λ的值(g′(x)为g(x)的导函数)

查看答案和解析>>

同步练习册答案