精英家教网 > 高中数学 > 题目详情
6.已知θ是第四象限,且$sin(θ+\frac{π}{4})=\frac{5}{13}$,则$tan(θ-\frac{π}{4})$=-$\frac{12}{5}$.

分析 利用同角三角函数的基本关系,诱导公式,求得cos(θ-$\frac{π}{4}$)和sin(θ-$\frac{π}{4}$)的值,再利用两角差的正切公式求得$tan(θ-\frac{π}{4})$的值.

解答 解:因为θ为第四象限角且$sin(θ+\frac{π}{4})=\frac{5}{13}$=cos($\frac{π}{4}$-θ)=cos(θ-$\frac{π}{4}$),
∴θ-$\frac{π}{4}$还是第四象限角,故$sin({θ-\frac{π}{4}})=-\frac{12}{13}$,
∴$tan(θ-\frac{π}{4})$=$\frac{sin(θ-\frac{π}{4})}{cos(θ-\frac{π}{4})}$=-$\frac{12}{5}$,
故答案为:-$\frac{12}{5}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式,以及三角函数在各个象限中的符号,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设变量x,y满足$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}}\right.$.若z=a2x+y(a>0)的最大值为 4.则 a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}x-y+4≥0\\ x-3y-6≤0\\ 2x+3y-12≤0\end{array}\right.$则z=x+2y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{lnx}{x+1}$.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当t<0时,对x>0且x≠1,均有f(x)-$\frac{t}{x}$>$\frac{lnx}{x-1}$成立.求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{n+1}={a}_{n}+p•{2}^{n}-nq(n∈{N}^{*})}\end{array}\right.$其中p,q∈R.
(1)若数列前四项a1,a2,a3,a4依次成等差数列,求p,q的值;
(2)若q=0,且数列{an}为等比数列,求p的值;
(3)若p=1,且a5是数列{an}的最小项,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P为矩形ABCD所在平面内一点,AB=4,AD=3,$PA=\sqrt{5}$,$PC=2\sqrt{5}$,则$\overrightarrow{PB}•\overrightarrow{PD}$=(  )
A.-5B.-5或0C.0D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且满足an=2Sn+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+$\frac{1}{2}$;
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.${({{x^2}+\frac{1}{x^2}-2})^3}$展开式中的常数项为(  )
A.20B.-20C.15D.-15

查看答案和解析>>

同步练习册答案