精英家教网 > 高中数学 > 题目详情
11.已知P为矩形ABCD所在平面内一点,AB=4,AD=3,$PA=\sqrt{5}$,$PC=2\sqrt{5}$,则$\overrightarrow{PB}•\overrightarrow{PD}$=(  )
A.-5B.-5或0C.0D.5

分析 根据矩形的性质和勾股定理可判断$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,继而可得$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,问题得以解决.

解答 解:P为矩形ABCD所在平面内一点,AB=4,AD=3,
∴AC=5,
∵$PA=\sqrt{5}$,$PC=2\sqrt{5}$,
∴PA2+PC2=AC2
∴PA⊥$\overrightarrow{PC}$,
∴$\overrightarrow{PB}$⊥$\overrightarrow{PD}$,
∴$\overrightarrow{PB}•\overrightarrow{PD}$=0,
故选:C.

点评 本题考查了向量的垂直和勾股定理,以及矩形的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合M={-1,0,1},N={y|y=1-cos$\frac{π}{2}$x,x∈M},则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,则$|\overrightarrow a+2\overrightarrow b|$=(  )
A.1B.2C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,已知实数x,y满足|x|≤2,|y|≤2,设z=min{x+y,2x-y},则z的取值范围为[-6,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知θ是第四象限,且$sin(θ+\frac{π}{4})=\frac{5}{13}$,则$tan(θ-\frac{π}{4})$=-$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[0,1]上任选两个数x和y,则$y≥\sqrt{1-{x^2}}$的概率为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$1-\frac{π}{6}$D.$1-\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,FD⊥平面ABCD,$FD=\sqrt{3}$.
(I)求证:EF∥平面ABCD;
(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(x-$\frac{1}{\sqrt{x}}$)n的展开式中,所有二项式系数之和为512,则展开式中x3的系数为126(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点(3a-9,a+2),且sin2α≤0,sinα>0,则a的取值范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

同步练习册答案