| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | B. | $φ=\frac{π}{9}$ | ||
| C. | 函数f(x)在区间$[0,\frac{π}{4}]$上是增函数 | D. | 函数f(x)的图象关于直线$x=\frac{5π}{6}$对称 |
分析 根据函数的图象与性质,求出A、T、ω与φ的值,写出f(x)的解析式,再判断出选项C正确.
解答 解:由函数的图象可得A=2,
$\frac{1}{2}$T=$\frac{4π}{9}$-$\frac{π}{9}$=$\frac{π}{3}$,
解得T=$\frac{2π}{3}$,
即$\frac{2π}{ω}$=$\frac{2π}{3}$,
解得ω=3;
再由五点法作图可得3×$\frac{π}{9}$+φ=2kπ,k∈Z,
解得φ=-$\frac{π}{3}$+2kπ,k∈Z,
又|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$;
∴f(x)=2sin(3x-$\frac{π}{3}$);
又x∈[0,$\frac{π}{4}$],
∴3x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{5π}{12}$],
∴f(x)是单调增函数,C正确.
故选:C.
点评 本题主要考查了由函数y=Asin(ωx+φ)的部分图象求解析式,以及利用解析式判断函数的性质与应用问题,是中档题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -3 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{41}{42}$ | B. | $\frac{1}{42}$ | C. | $\frac{40}{41}$ | D. | $\frac{42}{41}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com