精英家教网 > 高中数学 > 题目详情
3.已知sinθ-cosθ=$\frac{1}{2}$,求下列各式的值:
(1)sinθcosθ;
(2)sin3θ-cos3θ;
(3)sin4θ+cos4θ.

分析 (1)将已知等式两边平方,利用同角三角函数基本关系式即可得解.
(2)利用同角三角函数基本关系式及立方差公式即可得解.
(3)把sin4θ+cos4θ转化为含有sinθ•cosθ的代数式得答案;

解答 解:(1)∵sinθ-cosθ=$\frac{1}{2}$,
∴两边平方可得:1-2sinθcosθ=$\frac{1}{4}$,解得:sinθcosθ=$\frac{3}{8}$.
(2)sin3θ-cos3θ=(sinθ-cosθ)(sin2θ+sinθcosθ+cos2θ)=$\frac{1}{2}$×(1+$\frac{3}{8}$)=$\frac{11}{16}$.
(3)sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2×($\frac{3}{8}$)2=$\frac{23}{32}$.

点评 此题考查了同角三角函数基本关系的运用,考查了计算能力和转化思想,熟练掌握基本关系是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.不等式-2x2+x<-3的解集是(  )
A.$({-1,\frac{3}{2}})$B.$({-∞,-1})∪({\frac{3}{2},+∞})$C.$({1,\frac{3}{2}})$D.$({-∞,1})∪({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的函数f(x)满足y=f(x-3)的图象关于(3,0)中心对称,当-1≤x≤0时,f(x)=-x(1+x),则当0≤x≤1时,f(x)=-x(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z满足z(1-i)=1+i,则|z|=(  )
A.0B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列5个命题:
(1){很大的数}可以组成一个集合;
(2)集合{x|ax+b=0}是单元素集合;
(3)集合{小于1的正有理数}是一个有限集;
(4){1,2,3,4}={2,4,1,3};
(5)任何集合的子集个数都不少于1个;
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=x与双曲线$\frac{x^2}{2}$-$\frac{y^2}{4}$=1相交,则交点坐标是(  )
A.(2,2)B.(2,2)或(-2,-2)C.(-2,-2)D.(2,2)或(2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,bn=$\frac{1}{n(n+1)}$+|an|,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记数列{an}的前n项和为Sn,若Sn+(1+$\frac{2}{n}$)an=4,则a2016=(  )
A.$\frac{2016}{{2}^{2016}}$B.2016×22015C.2016×22016D.$\frac{2016}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),则下面结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$B.$φ=\frac{π}{9}$
C.函数f(x)在区间$[0,\frac{π}{4}]$上是增函数D.函数f(x)的图象关于直线$x=\frac{5π}{6}$对称

查看答案和解析>>

同步练习册答案