精英家教网 > 高中数学 > 题目详情
1.定义在区间(0,$\frac{π}{2}$)上的函数y=2cosx的图象与y=3tanx的图象交点为P,过点P做x轴的垂线PP1,垂足为P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长度为(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

分析 由条件求得sinx=$\frac{1}{2}$,即可得出线段P1P2 =sinx 的值.

解答 解:由2cosx=3tanx,x∈(0,$\frac{π}{2}$),
可得2cos2x=3sinx,
即 2-2sin2x=3sinx,
即 2sin2x+3sinx-2=0,
求得sinx=$\frac{1}{2}$,
故线段P1P2 =sinx=$\frac{1}{2}$.
故选:D.

点评 本题主要考查同角三角函数的基本关系,三角函数的图象特征,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z满足z(1-i)=1+i,则|z|=(  )
A.0B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记数列{an}的前n项和为Sn,若Sn+(1+$\frac{2}{n}$)an=4,则a2016=(  )
A.$\frac{2016}{{2}^{2016}}$B.2016×22015C.2016×22016D.$\frac{2016}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对任意的x∈(0,+∞),不等式(x-a+ln$\frac{x}{a}$)(-2x2+ax+10)≤0恒成立,则实数a的取值范围是a=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}前11项的和等于前4项的和.若a1=1,ak+a4=0,则k=(  )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8),三个数390,455,546的最大公约数是13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),则下面结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$B.$φ=\frac{π}{9}$
C.函数f(x)在区间$[0,\frac{π}{4}]$上是增函数D.函数f(x)的图象关于直线$x=\frac{5π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.由下列各式能确定y是x的函数是(  )
A.x2+y2=1B.x2-y+3=0C.$y=\sqrt{x-3}+\sqrt{2-x}+3$D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,若a3=b3,a4=b4,且$\frac{{{S_5}-{S_3}}}{{{T_4}-{T_2}}}$=5,$\frac{{{a_5}+{a_3}}}{{{b_5}+{b_3}}}$=(  )
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步练习册答案