精英家教网 > 高中数学 > 题目详情
14.将下列式子进行合一变形.
(1)$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$);
(2)sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$);
(3)sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$).

分析 由条件利用两角和差的正弦公式,可得结论.

解答 解:(1)$\sqrt{3}$sinx+cosx=2($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx )=2sin(x+$\frac{π}{6}$);
(2)sinx-$\sqrt{3}$cosx=2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)=2sin(x-$\frac{π}{3}$);
(3)sinx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x+$\frac{π}{4}$);
故答案为:2sin(x+$\frac{π}{6}$);2sin(x-$\frac{π}{3}$);$\sqrt{2}$sin(x+$\frac{π}{4}$).

点评 本题主要考查两角和差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.$\frac{{\sqrt{3}}}{3}$tan10°tan20°+tan10°+tan20°=(  )
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知a=3,b=5,c=$\sqrt{13}$,则cosC等于(  )
A.$\frac{1}{10}$B.$\frac{7}{10}$C.$\frac{3}{10}$D.$\frac{11}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1类比到空间,在长方体中,一条对角线与从其一顶点出发的三个面所成的角分别为α,β,γ,则有cos2α+cos2β+cos2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左焦点,P是C上一点,线段PF过虚轴端点B,且B是线段PF的三等分点,则C的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{13}$C.$\frac{{\sqrt{10}}}{2}$或$\sqrt{13}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,若a1=1,an•an+1=($\frac{1}{4}$)n-2,则满足不等式$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2n}}$+$\frac{1}{{a}_{2n+1}}$<2016的正整数n的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),向量$\overrightarrow b$在$\overrightarrow a$方向上的投影为-3,则t=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示程序框图,若输入的x=1,则输出的a,b的值依次是(  )
A.2,0B.0,2C.-1,-1D.1,1

查看答案和解析>>

同步练习册答案