【题目】已知点(1,2)是函数
的图象上一点,数列
的前
项和是
.
(1)求数列
的通项公式;
(2)若
,求数列
的前n项和![]()
【答案】(1)an=2n-1;(2)Tn=(n-1)2n+1.
【解析】
(1)由点(1,2)在
图像上求出
,再利用
法求出
。
(2)利用错位相减法求和,注意相减时项的符号,求和时项数的确定。
(1)把点(1,2)代入函数f(x)=ax得a=2,
所以数列{an}的前n项和为Sn=f(n)-1=2n-1.
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1,对n=1时也适合,
∴an=2n-1.
(2)由a=2,bn=logaan+1得bn=n,
所以anbn=n·2n-1.
Tn=1·20+2·21+3·22+…+n·2n-1,①
2Tn=1·21+2·22+3·23+…+(n-1)·2n-1+n·2n.②
由①-②得:-Tn=20+21+22+…+2n-1-n·2n,
所以Tn=(n-1)2n+1.
科目:高中数学 来源: 题型:
【题目】已知点
,点P是圆C:
上的任意一点,线段PQ的垂直平分线与直线CP交于点M.
求点M的轨迹方程;
过点
作直线与点M的轨迹交于点E,过点
作直线与点M的轨迹交于点
F不重合
,且直线AE和直线BF的斜率互为相反数,直线EF的斜率是否为定值,若为定值,求出直线EF的斜率;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000
公寓楼(每层的建筑面积相同).已知士地的征用费为
,土地的征用面积为第一层的
倍,经工程技术人员核算,第一层建筑费用为
,以后每增高一层,其建筑费用就增加
,设这幢公寓楼高层数为n,总费用为
万元.(总费用为建筑费用和征地费用之和)
(1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?
(2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
,则下列四个命题:
![]()
①点
在直线
上运动时,直线
与直线
所成角的大小不变
②点
在直线
上运动时,直线
与平面
所成角的大小不变
③点
在直线
上运动时,二面角
的大小不变
④点
在直线
上运动时,三棱锥
的体积不变
其中的真命题是 ( )
A.①③B.③④C.①②④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
是矩形,
平面
,
,点
在线段
上(不为端点),且满足
,其中
.
![]()
(1)若
,求直线
与平面
所成的角的大小;
(2)是否存在
,使
是
的公垂线,即
同时垂直
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆
经过伸缩变换
后得到曲线
.以坐标原点为极点,
轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
的直角坐标方程;
(2)设点
是
上一动点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若
在区间
上不是单调函数,求实数
的范围;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)当
时,设
,对任意给定的正实数
,曲线
上是否存在两点
,
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在
轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线
的方程为
,
.
(1)若直线
在
轴、
轴上的截距之和为-1,求坐标原点
到直线
的距离;
(2)若直线
与直线
:
和
:
分别相交于
、
两点,点
到
、
两点的距离相等,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com