精英家教网 > 高中数学 > 题目详情

【题目】为了估计某校某次数学考试的情况,现从该校参加考试的600名学生中随机抽出60名学生,其数学成绩(百分制)均在内,将这些成绩分成六组,得到如图所示的部分频率分布直方图.

(1)求抽出的60名学生中数学成绩在内的人数;

(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校参加考试的学生数学成绩为优秀的人数;

(3)试估计抽出的60名学生的数学成绩的中位数.

【答案】(1)15;(2)135;(3)76.

【解析】

1)根据频率的和等于1求出成绩在[7080)内的频率,计算对应的频数即可;

2)计算不小于85分的频数即可;

3)根据中位数平分频率分布直方图的面积,求出即可.

1)在频率分直方图中,小矩形的面积等于这一组的频率,频率的和等于1

成绩在[7080)内的频率1﹣(0.005+0.01+0.02+0.035+0.005×100.25

人数为0.25×6015人;

2)估计该校的优秀人数为不小于85分的频率再乘以样本总量600,即

600×0.005×10135人;

3)分数在[7080)内的频率为0.25

∵分数在[4070)内的频率为:(0.005+0.010+0.020×100.350.5

∴中位数在(7080]内,

∵中位数要平分直方图的面积,

∴中位数为:7076

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBDAB=BD

1)证明:平面ACD⊥平面ABC

2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若曲线处的切线方程为,求实数的值;

2,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数处有极值为10,求的值;

(2)对任意在区间单调增,求的最小值;

(3)若,且过点能作的三条切线,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作为加班拍档、创业伴侣、春运神器,曾几何时,方便面是我们生活中重要的“朋友”,然而这种景象却在近年出现了戏剧性的逆转.统计显示.2011年之前,方便面销量在中国连续年保持两位数增长,2013年的年销量更是创下亿包的辉煌战绩;但2013年以来,方便面销量却连续3年下跌,只剩亿包,具体如下表.相较于方便面,网络订餐成为大家更加青睐的消费选择.近年来,网络订餐市场规模的“井喷式”增长,也充分反映了人们消费方式的变化.

全国方便面销量情况(单位“亿包/桶)(数据来源:世界方便面协会)

年份

时间代号

年销量(亿包/桶)

(1)根据上表,求关于的线性回归方程.用所求回归方程预测2017 年()方便面在中国的年销量;

(2)方便面销量遭遇滑铁卢受到哪些因素影响? 中国的消费业态发生了怎样的转变? 某媒体记者随机对身边的位朋友做了一次调查,其中位受访者表示超过年未吃过方便面,位受访者认为方便面是健康食品;而位受访者有过网络订餐的经历,现从这人中抽取人进行深度访谈,记表示随机抽取的人认为方便面是健康食品的人数,求随机变量的分布列及数学期望.

参考公式:回归方程:,其中.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为,将沿对角线折起,使平面平面得到如图所示的三棱锥,若边的中点,分别为上的动点(不包括端点),且,设,则三棱锥的体积取得最大值时,三棱锥的内切球的半径为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛掷一蓝、一黄两枚质地均匀的正四面体骰子,分别观察底面上的数字.

1)用表格表示试验的所有可能结果;

2)列举下列事件包含的样本点:A=“两个数字相同B=“两个数字之和等于5”C=“蓝色骰子的数字为2”.

查看答案和解析>>

同步练习册答案