精英家教网 > 高中数学 > 题目详情

【题目】已知曲线yx3,求:

(1)曲线在点P(1,1)处的切线方程;

(2)过点P(1,0)的曲线的切线方程.

【答案】(1)3x-y-2=0;(2)3x-y-2=0

【解析】试题分析:(1)求出y的导数,求得切线的斜率,由点斜式方程可得切线的方程;
(2)设切点为(x0y0),求得切线的斜率,由两点的斜率公式,解方程可得x0,进而得到切线的方程.

试题解析:

y′=3x2.

(1)当x=1时,y′=3,即在点P(1,1)处的切线的斜率为3,

∴切线方程为y-1=3(x-1),即3x-y-2=0.

(2)设切点坐标为(x0y0),则过点P的切线的斜率为3x

由直线的点斜式,得切线方程yx=3x (xx0),

即3xxy-2x=0.

P(1,0)在切线上,∴3x-2x=0.

解之得x0=0或x0.

x0=0时,切线方程为y=0.

x0时,切线方程为27x-4y-27=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)

(1)求1路车从A站到D站所走的路程(精确到0.1);
(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg乙材料90kg,求在不超过600个工时的条件下,生产产品A和产品B的利润之和的最大值(元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知,且成等差数列.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是直角梯形,.

(1)求二面角的余弦值;

(2)设是棱上一点,的中点,若与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学(文)】已知双曲线的左右两个顶点是 ,曲线上的动点关于轴对称,直线 交于点

(1)求动点的轨迹的方程;

(2)点,轨迹上的点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙和点.作⊙的两条切线,切点分别为且直线的方程为

(1)求⊙的方程

(2)设为⊙上任一点,过点向⊙引切线,切点为试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.

(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.

查看答案和解析>>

同步练习册答案