分析 由已知sinθ+cosθ=$\frac{1}{2}$,可得sin2θ,求出cos2θ,从而可求tan2θ的值.
解答 解:已知sinθ+cosθ=$\frac{1}{2}$,(0<θ<π),
有1+sin2θ=$\frac{1}{4}$,
解得2sinθcosθ=-$\frac{3}{4}$,可得cosθ<0,θ∈($\frac{π}{2}$,π)
即:sin2θ=$-\frac{3}{4}$,则2θ∈(π,$\frac{3}{2}π$).
cos2θ=-$\sqrt{1-si{n}^{2}2θ}$=-$\sqrt{1-(-\frac{3}{4})^{2}}$=$-\frac{\sqrt{7}}{4}$
则tan2θ=$\frac{sinθ}{cosθ}$=$\frac{-\frac{3}{4}}{-\frac{\sqrt{7}}{4}}$=$\frac{3\sqrt{7}}{7}$.
故答案为:$\frac{3\sqrt{7}}{7}$.
点评 本题主要考察二倍角的正切公式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 16 | D. | 18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com