分析 利用同角三角函数的基本关系,两角和差的余弦公式求得cos(α+β)cosβ 和sin(α+β)sinβ 的值,可得要求式子的值.
解答 解:∵cos(α+2β)=$\frac{1}{5}$,cosα=$\frac{2}{5}$,∴cos[(α+β)+β]=cos(α+β)cosβ-sin(α+β)sinβ=$\frac{1}{5}$ ①,
cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ=$\frac{2}{5}$ ②,
根据①②求得cos(α+β)cosβ=$\frac{3}{10}$,sin(α+β)sinβ=$\frac{1}{10}$,
∴tan(α+β)tanβ=$\frac{sin(α+β)sinβ}{cos(α+β)cosβ}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.
点评 本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{7}{6}$ | D. | $\frac{7}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com