| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{7}{6}$ | D. | $\frac{7}{6}$ |
分析 画出满足条件的平面区域,求出角点的坐标,结合函数的图象求出a的值,从而求出z的最小值即可.
解答 解:画出满足条件的平面区域,如图示:
,
由$\left\{\begin{array}{l}{x-y=1}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$,
由$\left\{\begin{array}{l}{x+2y=2}\\{x=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=\frac{1}{2}}\end{array}\right.$
由z=2x-y+a得:y=2x+a-z,
显然直线过($\frac{4}{3}$,$\frac{1}{3}$)时,z取得最大值2,
此时$\frac{8}{3}$-$\frac{1}{3}$+a=2,解得:a=-$\frac{1}{3}$,
故z=2x-y-$\frac{1}{3}$,结合图象直线过(1,$\frac{1}{2}$)时,z最小,
z的最小值是2-$\frac{1}{2}$-$\frac{1}{3}$=$\frac{7}{6}$,
故选:D.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧q | C. | p∨¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com