分析 (1)先设行车时间为ξ.分别利用所需时间服从正态分布计算出走第一条路线及时赶到的概率和走第二条路线及时赶到的概率后,比较大小即可;
(2)根据题意,分别求出走第一条路线及时赶到的概率和走第二条路线及时赶到的概率,即可解决问题.
解答 解:设行车时间为ξ.
(1)走第一条路线及时赶到的概率为p(0<ξ≤7)=Φ($\frac{7-5}{1}$)-Φ($\frac{0-5}{1}$)=Φ(2)-Φ(-5)≈Φ(2)=0.9772
走第二条路线及时赶到的概率为p(0<ξ≤7)=Φ($\frac{7-6}{0.4}$)-Φ($\frac{0-6}{0.4}$)=Φ(2.5)-Φ(-15)≈Φ(2.5)=0.9938.
因此在这种情况下应走第二条路线.
(2)走第一条路线及时赶到的概率为p(0<ξ≤6.5)=Φ($\frac{6.5-5}{1}$)-Φ($\frac{0-5}{1}$)=Φ(1.5)-Φ(-5)≈Φ(1.5)=Φ(1.5)=0.9332.
走第二条路线及时赶到的概率为p(0<ξ≤6.5)=Φ($\frac{6.5-6}{0.4}$)-Φ($\frac{0-6}{0.4}$)=Φ(1.25)-Φ(-15)≈Φ(1.25)=0.8944.
因此在这种情况下应走第一条路线.
点评 本题主要考查了正态分布曲线的特点及曲线所表示的意义,考查了利用概率解决实际问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | M={(1,2)},N={(2,1)} | B. | M={1,2},N={(2,1)} | ||
| C. | M=∅,N={∅} | D. | M={x︳x2-3x+2=0},N={1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $-\frac{3}{8}$ | C. | $\frac{{3\sqrt{7}}}{8}$ | D. | -$\frac{{3\sqrt{7}}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{7}{6}$ | D. | $\frac{7}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 2015 | D. | 2016 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com