| A. | 1 | B. | 2 | C. | 2015 | D. | 2016 |
分析 设等差数列{an}的公差为d.可得$\frac{{S}_{n+1}}{n+1}-\frac{{S}_{n}}{n}$=$\frac{{a}_{n+1}-{a}_{n}}{2}$=$\frac{1}{2}$d,即可得出.
解答 解:设等差数列{an}的公差为d.
∵${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}$,
∴$\frac{{S}_{n+1}}{n+1}-\frac{{S}_{n}}{n}$=$\frac{{a}_{1}+{a}_{n+1}}{2}$-$\frac{{a}_{1}+{a}_{n}}{2}$=$\frac{{a}_{n+1}-{a}_{n}}{2}$=$\frac{1}{2}$d
又$\frac{{S}_{2016}}{2016}$=$\frac{{S}_{2015}}{2015}$+1,
∴等差数列{an}的公差为2.
故选:B.
点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 27 | B. | 18 | C. | 36 | D. | 54 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{{5\sqrt{6}}}{18}$ | B. | -$\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com