精英家教网 > 高中数学 > 题目详情
13.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为(  )
A.-$\frac{{5\sqrt{6}}}{18}$B.-$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由此利用向量法能求出异面直线AE与BF所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,
A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),
$\overrightarrow{AE}$=(-2,1,2),$\overrightarrow{BF}$=(-2,0,1),
设异面直线AE与BF所成角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{AE}•\overrightarrow{BF|}}{|\overrightarrow{AE}|•|\overrightarrow{BF}|}$=$\frac{6}{3\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$.
∴异面直线AE与BF所成角的余弦值为$\frac{2\sqrt{5}}{5}$.
故选:D.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an},a1=26,Sn为它的前n项和,S3=S11,求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}前n项和为Sn,且$\frac{{S}_{2016}}{2016}$=$\frac{{S}_{2015}}{2015}$+1,则数列{an}的公差为(  )
A.1B.2C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若圆锥的侧面展开图是半径为1cm、圆心角为120°的扇形,则这个圆锥的轴截面面积等于$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,已知PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分别是BC、AP的中点,则异面直线AC与DE所成角的大小为$arccos\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)定理:平面内的一条直线与平面的一条斜线在平面内的射影垂直,则这条直线垂直于斜线.
试证明此定理:如图1所示:若PA⊥α,A是垂足,斜线PO∩α=O,a?α,a⊥AO,试证明a⊥PO

(2)如图2,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,试证明动点P在线段B1C上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在菱形ABCD中,A=60°,AB=2$\sqrt{3}$,将△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小为120°,则三棱锥P-BCD的外接球体积为(  )
A.$\frac{28\sqrt{7}}{3}$πB.28$\sqrt{7}$πC.$\frac{32}{3}$πD.4$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若2sin2α=1-cos2α,则tanα等于(  )
A.-2B.2C.-2或0D.2或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}和等差数列{bn}均是首项为1的递增数列,且a2=b2,a3=b4
(I)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=an+(-1)nbn,求数列{cn)前n项和Sn

查看答案和解析>>

同步练习册答案