精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2),数列{bn}满足bn=an•an+1,Tn为数列{bn}的前n项和.
(1)证明:数列{
1
an
}
是等差数列;
(2)若对任意的n∈N*,不等式λTn<n+12恒成立,求实数λ的取值范围.
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
1
an
-
1
an-1
=3
,n≥2,
1
a1
=1,由此能证明数列{
1
an
}
是首项为1,公差为3的等差数列.
(2)由(1)得an=
1
3n-2
,从而bn=an•an+1=
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
),由此利用裂项求和法推导出λ<3n+
12
n
+37
,由此能求出实数λ的取值范围.
解答: (1)证明:∵数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2),
1
an
-
1
an-1
=3
,n≥2,
1
a1
=1,
∴数列{
1
an
}
是首项为1,公差为3的等差数列.
(2)解:由(1)得
1
an
=1+(n-1)×3=3n-2.
∴an=
1
3n-2

∵bn=an•an+1=
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
),
∴Tn=
1
3
(1-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)=
1
3
(1-
1
3n+1
),
∵λTn<n+12恒成立,
λ<3n+
12
n
+37
≤49(当且仅当n=2时取“=”),
解得λ<49.
点评:本题考查等差数列的证明,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x| y=
x2-4
 },B={y|y=x2-2x}
,则A∩B=(  )
A、{y|-2≤y≤2}
B、{x|x≥-1}
C、{y|-1≤y≤2}
D、{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-
1
4
x2在区间[0,2)上最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增数列{an}满足2an+1=an+an+2(n∈N*)且a1+a2+a3=18,a1a2a3=192.
(1)求{an}的通项公式;
(2)若bn=man(m为常数,m>0且m≠1),求数列{bn}的前n项和Tn
(3)在(2)的条件下,若cn=bn•lgbn且{cn}的每一项都小于它的后一项,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=5,AB=4,AD=3,求直线PC与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln|x|与y=-
-x2+1
在同一平面直角坐标系内的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,SA⊥底面ABCD,底面为等腰梯形,AD∥BC,AB=1,BC=2,AC=
3
,SA=2,且四棱锥顶点都在同一球面上,则此四棱锥外接球表面积为(  )
A、4πB、5πC、7πD、8π

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,y>0,求
x-y
(1+x)(1+y)+xy
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+px+q满足f(-2+x)=f(-2-x),其图象经过点(-4,0),求二次函数的解析式.

查看答案和解析>>

同步练习册答案