精英家教网 > 高中数学 > 题目详情
9.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,则称数列{an}为“段差比数列”,其中常数k、d、t分别叫做段长、段差、段比,设数列{bn}为“段差比数列”.
(1)已知{bn}的首项、段长、段差、段比分别为1、2、d、t,若{bn}是等比数列,求d、t的值;
(2)已知{bn}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式${S}_{3n}≤λ{•3}^{n-1}$对n∈N*恒成立,求实数λ的取值范围;
(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{bn},对任意正整数n都有bn+6=bn.若存在,写出所有满足条件的{bn}的段长k和段比t组成的有序数组(k,t);若不存在,说明理由.

分析 (1){bn}的前4项依次为1,1+d,t(1+d),t(1+d)+d,先求出t,再代入验证,可得结论;
(2)由{bn}的首项、段长、段比、段差,⇒b3n+2-b3n-1=(b3n+1+d)-b3n-1=(qb3n+d)-b3n-1=[q(b3n-1+d)+d]-b3n-1=2d=6,⇒{b3n-1}是等差数列,又b3n-2+b3n-1+b3n=(b3n-1-d)+b3n-1+(b3n-1+d)=3b3n-1,即可求S3n,从而求实数λ的取值范围;
(3)k取2,3,4时存在,有序数组可以是(2,$\frac{b}{b+d}$),(3,$\frac{b}{b+2d}$),(3,-1),(6,$\frac{b}{b+5d}$).

解答 解:(1){bn}的前4项依次为1,1+d,t(1+d),t(1+d)+d,
由前三项成等比数列得(1+d)2=t(1+d),
∵1+≠0,∴t=1+d,
那么第2,3,4项依次为t,t2,t2+t-1,∴t4=t(t2+t-1),∴t=±1.
t=1时,d=0,bn=1,满足题意;
t=-1时,d=-2,bn=(-1)n-1,满足题意;
(2)∵{bn}的首项、段长、段比、段差分别为1、3、1、3,
∴b3n+2-b3n-1=(b3n+1+d)-b3n-1=(qb3n+d)-b3n-1=[q(b3n-1+d)+d]-b3n-1=2d=6,
∴{b3n-1}是以b2=4为首项、6为公差的等差数列,
又∵b3n-2+b3n-1+b3n=(b3n-1-d)+b3n-1+(b3n-1+d)=3b3n-1
∴S3n=(b1+b2+b3)+(b4+b5+b6)+…+(b3n-2+b3n-1+b3n)=3(b2+b5+…+b3n-1)=3[4n+$\frac{n(n-1)}{2}×6$]=9n2+3n,…(6分)
∵${S}_{3n}≤λ{•3}^{n-1}$,∴$\frac{{S}_{3n}}{{3}^{n-1}}≤λ$,
设cn=$\frac{{S}_{3n}}{{3}^{n-1}}$,则λ≥(cnmax
又cn+1-cn=$\frac{-2(3{n}^{2}-2n-2)}{{3}^{n-1}}$,
当n=1时,3n2-2n-2<0,c1<c2;当n≥2时,3n2-2n-2>0,cn+1<cn
∴c1<c2>c3>…,∴(cnmax=c2=14,…(9分)
∴λ≥14,得λ∈[14,+∞).…(10分)
(3)k取2,3,4时存在,有序数组可以是(2,$\frac{b}{b+d}$),(3,$\frac{b}{b+2d}$),(3,-1),(6,$\frac{b}{b+5d}$).

点评 本题考查了等差等比数列的运算及性质,考查了学生的推理和分析能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,在三棱柱ABC-A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ(  )
A.只可能经过点IB.只可能经过点G,H
C.可能经过点G,H,ID.不可能经过点G,H,I

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=Asin(ωx+ϕ),($A>0,ω>0,-\frac{π}{2}<ϕ<\frac{π}{2}$)的部分 图象如图所示,则函数f(x)的解析式为f(x)=2sin(2x$-\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义Hn=$\frac{{a}_{1}+2{a}_{2}+…+{2}^{n-1}{a}_{n}}{n}$为数列{an}的均值,已知数列{bn}的均值${H}_{n}{=2}^{n+1}$,记数列{bn-kn}的前n项和是Sn,若Sn≤S5对于任意的正整数n恒成立,则实数k的取值范围是[$\frac{7}{3}$,$\frac{12}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y=\sqrt{3-x}$的定义域为(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:
t03691215182124
y57.552.557.552.55
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是(  )
A.$y=5+\frac{5}{2}sin\frac{π}{12}t,t∈[0,24]$B.$y=5+\frac{5}{2}sin(\frac{π}{12}t+\frac{π}{2}),t∈[0,24]$
C.$y=5+\frac{5}{2}sin\frac{π}{6}t,t∈[0,24]$D.$y=5+\frac{5}{2}sin(\frac{π}{6}t+π),t∈[0,24]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z的实部为a(a<0),虚部为1,模长为2,$\overline{z}$是z的共轭复数,则$\frac{1+\sqrt{3}i}{\overline{z}}$的值为(  )
A.$\frac{\sqrt{3}+i}{2}$B.-$\sqrt{3}$-iC.-$\sqrt{3}$+iD.-$\frac{\sqrt{3}+i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合A={x|x>2},B={1,2,3,4},那么(∁UA)∩B=(  )
A.{3,4}B.{1,2,3}C.{1,2}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案