精英家教网 > 高中数学 > 题目详情
20.函数f(x)=Asin(ωx+ϕ),($A>0,ω>0,-\frac{π}{2}<ϕ<\frac{π}{2}$)的部分 图象如图所示,则函数f(x)的解析式为f(x)=2sin(2x$-\frac{π}{3}$).

分析 由图象求出函数的周期、最大值A,由周期公式求出ω的值,由函数过的特殊点列出方程,结合条件求出ϕ,可求出函数的解析式.

解答 解:由图可得:A=2,
且$\frac{3}{4}T=\frac{5π}{12}-(-\frac{π}{3})$,解得T=π,
又ω>0,则$\frac{2π}{ω}=π$,解得ω=2,
则函数f(x)=2sin(2x+ϕ),
因为函数图象过点($-\frac{π}{3}$,0),
所以2sin($-\frac{2π}{3}$+ϕ)=0,即$-\frac{2π}{3}$+ϕ=kπ(k∈Z),
解得ϕ=$\frac{2π}{3}$+kπ(k∈Z),
又$-\frac{π}{2}<ϕ<\frac{π}{2}$,则$ϕ=-\frac{π}{3}$,
所以f(x)=2sin(2x$-\frac{π}{3}$),
故答案为:f(x)=2sin(2x$-\frac{π}{3}$).

点评 本题考查由图象求出正弦型函数解析式,三角函数的周期公式,解题的关键是要根据图象分析出函数的最值、周期等,进而求出A,ω和φ值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列集合表示正确的是(  )
A.{2,4}B.{2,4,4}C.(1,2,3)D.{高个子男生}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.样本的数据如下:3,4,4,x,5,6,6,7,若该样本平均数为5,则样本方差为(  )
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在平行六面体A1C中,AD=AB=AA1=4,∠A1AB=60°,∠BAD=90°,∠A1AD=120°,cos∠A1AC=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设直线3x+4y-5=0与圆C1:x2+y2=9交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧AB上,则圆C2半径的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0)的最小正周期为2π,则f(-$\frac{π}{6}$)=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,则称数列{an}为“段差比数列”,其中常数k、d、t分别叫做段长、段差、段比,设数列{bn}为“段差比数列”.
(1)已知{bn}的首项、段长、段差、段比分别为1、2、d、t,若{bn}是等比数列,求d、t的值;
(2)已知{bn}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式${S}_{3n}≤λ{•3}^{n-1}$对n∈N*恒成立,求实数λ的取值范围;
(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{bn},对任意正整数n都有bn+6=bn.若存在,写出所有满足条件的{bn}的段长k和段比t组成的有序数组(k,t);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|$\frac{x-2}{x}$≤0},B={0,1,2,3},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

同步练习册答案