精英家教网 > 高中数学 > 题目详情
17.已知复数z的实部为a(a<0),虚部为1,模长为2,$\overline{z}$是z的共轭复数,则$\frac{1+\sqrt{3}i}{\overline{z}}$的值为(  )
A.$\frac{\sqrt{3}+i}{2}$B.-$\sqrt{3}$-iC.-$\sqrt{3}$+iD.-$\frac{\sqrt{3}+i}{2}$

分析 由复数z的实部为a(a<0),虚部为1,模长为2,可求出a的值,得到复数z,再求出$\overline{z}$,然后代入$\frac{1+\sqrt{3}i}{\overline{z}}$,由复数代数形式的乘除运算化简计算可得答案.

解答 解:∵复数z的实部为a(a<0),虚部为1,
则复数z=a+i.
又模长为2,∴$\sqrt{{a}^{2}+1}=2$,解得a=$-\sqrt{3}$.
∴z=$-\sqrt{3}+i$,$\overline{z}=-\sqrt{3}-i$.
则$\frac{1+\sqrt{3}i}{\overline{z}}$=$\frac{1+\sqrt{3}i}{-\sqrt{3}-i}=\frac{(1+\sqrt{3}i)(-\sqrt{3}+i)}{(-\sqrt{3}-i)(-\sqrt{3}+i)}$=$\frac{-2\sqrt{3}-2i}{4}=-\frac{\sqrt{3}+i}{2}$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,在平行六面体A1C中,AD=AB=AA1=4,∠A1AB=60°,∠BAD=90°,∠A1AD=120°,cos∠A1AC=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,则称数列{an}为“段差比数列”,其中常数k、d、t分别叫做段长、段差、段比,设数列{bn}为“段差比数列”.
(1)已知{bn}的首项、段长、段差、段比分别为1、2、d、t,若{bn}是等比数列,求d、t的值;
(2)已知{bn}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式${S}_{3n}≤λ{•3}^{n-1}$对n∈N*恒成立,求实数λ的取值范围;
(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{bn},对任意正整数n都有bn+6=bn.若存在,写出所有满足条件的{bn}的段长k和段比t组成的有序数组(k,t);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,只需将函数y=sin2x的图象上每一点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向左平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{π}{3}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设命题p:?x∈R,x2+1>0,则¬p为(  )
A.$?{x_0}∈R,{x^2}+1>0$B.$?{x_0}∈R,{x^2}+1≤0$C.$?{x_0}∈R,{x^2}+1<0$D.$?{x_0}∈R,{x^2}+1≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中为奇函数的是(  )
A.y=xcosxB.y=xsinxC.y=|1nx|D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|$\frac{x-2}{x}$≤0},B={0,1,2,3},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于数列{an},定义H0=$\frac{{{a_1}+2{a_2}+…+{2^{n-1}}{a_n}}}{n}$为{an}的“优值”.现已知某数列的“优值”H0=2n+1,记数列{an-20}的前n项和为Sn,则Sn的最小值为(  )
A.-64B.-68C.-70D.-72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数(0,50](50,100](100,150](150,200](200,250](250,300]
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.
(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案