精英家教网 > 高中数学 > 题目详情
1.设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:
t03691215182124
y57.552.557.552.55
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是(  )
A.$y=5+\frac{5}{2}sin\frac{π}{12}t,t∈[0,24]$B.$y=5+\frac{5}{2}sin(\frac{π}{12}t+\frac{π}{2}),t∈[0,24]$
C.$y=5+\frac{5}{2}sin\frac{π}{6}t,t∈[0,24]$D.$y=5+\frac{5}{2}sin(\frac{π}{6}t+π),t∈[0,24]$

分析 由表格求出函数最值和周期,再求出A、K的值,由三角函数的周期公式求出ω的值,将特殊点代入解析式列出方程求出ϕ,可求出函数的解析式.

解答 解:由表格可得:函数的最大值是7.5、最小值是2.5,
则A=$\frac{1}{2}(7.5-2.5)$=$\frac{5}{2}$,k=$\frac{1}{2}(7.5+2.5)$=5,
且T=15-3=12,又ω>0,则$\frac{2π}{ω}=12$,解得ω=$\frac{π}{6}$,
则函数f(t)=5+$\frac{5}{2}$sin($\frac{π}{6}$t+ϕ),
因为函数图象过点(0,5),
所以5+$\frac{5}{2}$sinϕ=5,则sinϕ=0,即ϕ=kπ(k∈Z),
又函数图象过点(3,7.5),
所以5+$\frac{5}{2}$sin($\frac{π}{2}$+ϕ)=7.5,则sin($\frac{π}{2}$+ϕ)=1,
即ϕ=0,
所以$y=5+\frac{5}{2}sin\frac{π}{6}t,t∈[0,24]$,
故选C.

点评 本题考查正弦型函数解析式的求法,三角函数的周期公式,解题的关键是要根据表格分析出函数的最值、周期等,进而求出各个参数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.样本的数据如下:3,4,4,x,5,6,6,7,若该样本平均数为5,则样本方差为(  )
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0)的最小正周期为2π,则f(-$\frac{π}{6}$)=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{an}满足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,则称数列{an}为“段差比数列”,其中常数k、d、t分别叫做段长、段差、段比,设数列{bn}为“段差比数列”.
(1)已知{bn}的首项、段长、段差、段比分别为1、2、d、t,若{bn}是等比数列,求d、t的值;
(2)已知{bn}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式${S}_{3n}≤λ{•3}^{n-1}$对n∈N*恒成立,求实数λ的取值范围;
(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{bn},对任意正整数n都有bn+6=bn.若存在,写出所有满足条件的{bn}的段长k和段比t组成的有序数组(k,t);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知9a=3,lnx=a,则x=$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,只需将函数y=sin2x的图象上每一点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向左平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{π}{3}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设命题p:?x∈R,x2+1>0,则¬p为(  )
A.$?{x_0}∈R,{x^2}+1>0$B.$?{x_0}∈R,{x^2}+1≤0$C.$?{x_0}∈R,{x^2}+1<0$D.$?{x_0}∈R,{x^2}+1≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|$\frac{x-2}{x}$≤0},B={0,1,2,3},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}={(-1)^{n-1}}{a_n}$,求数列{bn}的前2n项和T2n

查看答案和解析>>

同步练习册答案