精英家教网 > 高中数学 > 题目详情

已知函数,().
(Ⅰ)已知函数的零点至少有一个在原点右侧,求实数的范围.
(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.
试问:函数)是否存在“中值相依切线”,请说明理由.

(Ⅰ)(Ⅱ)函数不存在“中值相依切线”,理由见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是实数,函数
(1)若,求的值及曲线在点处的切线方程;
(2)求在区间上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且函数处都取得极值。
(1)求实数的值;
(2)求函数的极值;
(3)若对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)求函数的最值;
(2)对于一切正数,恒有成立,求实数的取值组成的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数 
(1)当时,求函数的最大值;
(2)令,()其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(15分)已知函数.
(1)若的切线,函数处取得极值1,求的值;
证明:
(3)若,且函数上单调递增,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=f(x)是定义在区间[-]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案