【题目】已知函数f(x)=﹣ +x在区间[m,n]上的最小值是2m,最大值是2n,求m,n的值.
【答案】解:①当m<n≤1时,函数在区间[m,n]上单调增,f(m)=﹣ +m=2m,f(n)=﹣ +n=2n,
求得m=﹣2,n=0.
②当1<m<n时,f(x)在[m,n]上递减,且f(x)< 值域为[2m,2n],2n< ,矛盾
③m≤1<n时,f(x)mac= ,
若值域为[2m,2n],
则2n= ,n= 652与n>1矛盾
综上,符合条件的m,n的值为m=﹣2,n=0
【解析】对m和n的范围进行分类讨论,并根据函数的单调性表示出函数的最大值和最小值建立等式求得m和n.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下列各组对象不能构成一个集合的是( )
A.不超过20的非负实数
B.方程x2﹣9=0在实数范围内的解
C. 的近似值的全体
D.临川十中2016年在校身高超过170厘米的同学的全体
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B是抛物线x2=2py(p>0)上的两个动点,O为坐标原点,非零向量满足.
(1)求证:直线AB经过一定点;
(2)当AB的中点到直线y-2x=0的距离的最小值为时,求p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ (x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为。
(I)求椭圆C的方程;
(II)已知经过点F的动直线与椭圆C交于不同的两点A、B,点M坐标为(),证明: 为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,线段的中点为,线段的中点为,线段的中点为.
(1)求异面直线、所成角的大小;
(2)求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com