精英家教网 > 高中数学 > 题目详情
15.已知$sin(θ-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$,则$cos(\frac{π}{3}-2θ)$=$\frac{1}{3}$.

分析 由已知利用二倍角公式即可计算得解.

解答 解:∵$sin(θ-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$,
∴$cos(\frac{π}{3}-2θ)=1-2{sin^2}(θ-\frac{π}{6})=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查了二倍角公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,$\overrightarrow{DM}=2\overrightarrow{MB}$,则$\overrightarrow{AC}•\overrightarrow{AM}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴切于点(3,0).
(1)求函数f(x)的解析式;
(2)若g(x)+f(x)=-6x2+(3c+9)x,命题p:?x1,x2∈[-1,1],|g(x1)-g(x2)|>1为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=$\sqrt{2}$AP,延长OP交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为(  )
A.$\frac{1}{9}$B.-1或1C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,过左焦点F且垂直于x轴的直线与椭圆C相交,所得弦长为1,斜率为k(k≠0)的直线l过点(1,0),且与椭圆C相交于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点M,使得无论k取何值,$\overrightarrow{MA}•\overrightarrow{MB}-\frac{k^2}{{1+4{k^2}}}$为定值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若同时掷两颗均匀的骰子,则所得点数之和大于4的概率等于$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)(  )
A.16B.20C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$与双曲线${C_2}:{x^2}-\frac{y^2}{2}=1$的离心率相同,双曲线C1的左、右焦点分别为F1,F2,M是双曲线C1的一条渐近线上的点,且OM⊥MF2,若△OMF2的面积为$2\sqrt{2}$,则双曲线C1的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

同步练习册答案