精英家教网 > 高中数学 > 题目详情
3.观察数表:
1     2     3     4  …第一行
2     3     4     5  …第二行
3     4     5     6  …第三行
4     5     6     7  …第四行

第一列 第二列 第三列 第四列
根据数表中所反映的规律,第n行与第n-1列的交叉点上的数应该是(  )
A.2n-1B.2n+1C.n2-1D.2n-2

分析 由给出排列规律可知,第一行第一列交叉点上的数是1,第2行第2列交叉点上的数是3,…,第n 行与第n 列交叉点上的数构成一个等差数列,先求出第n行与第n列的交叉点上的数,进而可得第n行与第n-1列的交叉点上的数.

解答 解:由给出排列规律可知,
第一行第一列交叉点上的数是1,
第2行第2列交叉点上的数是3,
…,
交叉点上的数构成一个等差数列.
第n 行与第n 列交叉点上的数是2n-1,
故第n行与第n-1列的交叉点上的数为:2n-2,
故选:D

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.对a,b∈R,记max{a,b}=$\left\{\begin{array}{l}a{,_{\;}}a≥b\\ b{,_{\;}}a<b\end{array}\right.$,函数f(x)=max{|x+1|,|x-m|}(x∈R)的最小值是$\frac{3}{2}$,则实数m的值是2或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数 y=cos2x+2cosx的值域是(  )
A.[-1,3]B.$[-\frac{3}{2},3]$C.$[-\frac{3}{2},-1]$D.$[\frac{3}{2},3]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点,AB=2,$A{A_1}=AC=BC=\sqrt{2}$
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1和A1D所成角的大小;
(3)求三棱锥A1-DEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a=3,b=5,c=7,那么这个三角形的最大角是(  )
A.135°B.150°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l经过(2,-3)和(-10,6)两点,则点(-1,1)到直线l的距离为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是(  )
①P(B)=$\frac{2}{5}$;  ②$P(B\left|{A_1}\right.)=\frac{5}{11}$;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件.
A.②④B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的一个顶点为A(0,-1),焦点在x轴上,右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(1)求椭圆C的方程;
(2)设椭圆C与直线y=x+1相交于不同的两点M,N,求$\overrightarrow{AM}$•$\overrightarrow{AN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以原点(0,0)为圆心,且与直线x+y-2=0相切的圆的方程为x2+y2=2.

查看答案和解析>>

同步练习册答案