精英家教网 > 高中数学 > 题目详情
20.已知函数y=x3-3x+c的图象与x轴恰有三个公共点,则实数c的取值范围是(-2,2).

分析 由题意,根据根的存在性定理知,只需使函数f(x)的极大值与极小值符号相反即可.

解答 解:令f′(x)=3x2-3=0解得,
x=1或x=-1,
∵函数f(x)=x3-3x+c的图象与x轴恰好有三个不同的公共点,
∴f(1)f(-1)<0,
即(c-2)(c+2)<0,
则-2<c<2,
故答案为:(-2,2).

点评 本题考查了函数的图象与性质,利用导数求极值及根的存在性定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.数列{an}的通项公式为an=(1+$\frac{1}{n}$)n(n∈N*),求证:
(1){an}为递增数列;
(2)2≤an<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若C${\;}_{x}^{12}$=C${\;}_{x}^{18}$,则x=30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=1+sinx在点P(0,1)处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若对任意的实数x,关于x的不等式|a-x+2|+|2a-x+1|≥|a|恒成立,则实数a的取值范围为(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线$\left\{\begin{array}{l}x=1-2t\\ y=2+3t\end{array}\right.$(t为参数)与直线4x+ky=1垂直,则常数k=(  )
A.-6B.$-\frac{1}{6}$C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x~B(n,p),且E(x)=6,D(x)=3,则P(x=1)=$\frac{3}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个盒子中有20个大小形状相同的小球,其中5个红球,5个黄球,10个蓝球,从盒子中任取一球,若它不是红球,则它是蓝球的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知m>0,n>0,mn=1,则m+n的最小值是2.

查看答案和解析>>

同步练习册答案