【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.
【答案】(1)(2)证明见解析
【解析】
试题(1)利用线面垂直的判定定理先证明AC⊥平面BCC1B1,BC1平面BCC1B1,即可证得AC⊥BC1;
(2)取BC1与B1C的交点为O,连DO,则OD是三角形ABC1的中位线,OD∥AC1,而AC1平面B1CD,利用线面平行的判定定理
即可得证.
证明:(1)在直三棱柱ABC﹣A1B1C1中,∵CC1⊥平面ABC,
∴CC1⊥AC,
又AC⊥BC,BC∩CC1=C,
∴AC⊥平面BCC1B1
∴AC⊥BC1.
(2)设BC1与B1C的交点为O,连接OD,BCC1B1为平行四边形,则O为B1C中点,又D是AB的中点,
∴OD是三角形ABC1的中位线,OD∥AC1,
又∵AC1平面B1CD,OD平面B1CD,
∴AC1∥平面B1CD.
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的序号是_________.
① 的图象与的图象关于轴对称;
② 若,则的值为1;
③ 若, 则 ;
④ 把函数的图象向左平移个单位长度后,所得图象的一条对称轴方程为;
⑤ 在钝角中,,则;
⑥ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“辗转相除法”的算法思路如右图所示.记R(a\b)为a除以b所得的余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出b的值为( )
A.0
B.1
C.9
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sinxsin(x+ )﹣1(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三支球队进行某种比赛,其中两队比赛,另一队当裁判,每局比赛结束时,负方在下一局当裁判.设各局比赛双方获胜的概率均为 ,各局比赛结果相互独立,且没有平局,根据抽签结果第一局甲队当裁判
(1)求第四局甲队当裁判的概率;
(2)用X表示前四局中乙队当裁判的次数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= 在区间(﹣∞,2)上为单调递增函数,则实数a的取值范围是( )
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com