精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=2sin(2x+ϕ)+1的图象过点(0,0),且$-\frac{π}{2}<ϕ<0$.
(Ⅰ)求ϕ的值;
(Ⅱ)求函数f(x)的最大值,并求此时x的值.

分析 (Ⅰ)依题意,可得$sinϕ=-\frac{1}{2}$,又$-\frac{π}{2}<ϕ<0$,从而可求ϕ的值;
(Ⅱ)由(Ⅰ)得 $f(x)=2sin(2x-\frac{π}{6})+1$,利用正弦函数的有界性可求函数f(x)的最大值,及取最大值时x的值.

解答 解:(Ⅰ) 因为函数f(x)=2sin(2x+ϕ)+1的图象过点(0,0),
所以 $sinϕ=-\frac{1}{2}$,又$-\frac{π}{2}<ϕ<0$,所以$ϕ=-\frac{π}{6}$.
(Ⅱ)由(Ⅰ)得 $f(x)=2sin(2x-\frac{π}{6})+1$,所以 f(x)max=3,
此时由$2x-\frac{π}{6}=2kπ+\frac{π}{2},得x=kπ+\frac{2π}{3}\;(k∈Z)$.

点评 本题考查正弦函数的图象与性质,求得f(x)=2sin(2x-$\frac{π}{6}$)+1是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设正项等比数列{an}的前n项和为Sn,且$\frac{{{a_{n+1}}}}{a_n}$<1,若a3+a5=20,a3a5=64,则S4=(  )
A.63或126B.252C.120D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在棱长为1的正方体ABCD-A1B1C1D1中,B1C与BD所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)={(cosx+sinx)^2}-2sinxcos(\frac{π}{2}-x)$
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的最大值及f(x)取最大值时x的集合;
(Ⅲ)求函数f(x)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若g(x+1)=2x-2,则g(0)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直三棱柱ABC-A1B1C1中,D,E分别为AA1,CC1的中点,AC⊥BE,点F在线段AB上,且AB=4AF.
(1)证明:BC⊥C1D;
(2)若M为线段BE上一点,试确定M在线段BE上的位置,使得C1D∥平面B1FM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在直二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则直线AB与CD所成角的余弦值为(  )
A.$\frac{{2\sqrt{29}}}{29}$B.$\frac{{\sqrt{29}}}{29}$C.$\frac{{5\sqrt{29}}}{29}$D.$\frac{{2\sqrt{203}}}{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,向量$\overrightarrow{AB}$与$\overrightarrow{OM}$是共线向量.
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a+b=1,b>0,则$\frac{1}{2|a|}+\frac{|a|}{b}$的最小值为(  )
A.$\sqrt{2}+\frac{1}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案