精英家教网 > 高中数学 > 题目详情
在△ABC中,∠C=90°,则cos2A+cos2B=1,用类比的方法猜想三棱锥的类似性质,并证明你的猜想.
考点:棱锥的结构特征,类比推理
专题:空间位置关系与距离
分析:“在三棱锥P-ABC中,三个侧面PAB、PAC、PCB两两垂直,且与底面所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1”.
证明:设P在平面ABC上的射影为O,记PO=h,由已知得cosα=sin∠PCO=
h
PC
,同理,cosβ=
h
PA
,cosγ=
h
PB
,由此能证明cos2α+cos2β+cos2γ=1.
解答: 解:如图,由平面类比到空间,有下列猜想:
“在三棱锥P-ABC中,三个侧面PAB、PAC、PCB两两垂直,且与底面所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1”.
证明:设P在平面ABC上的射影为O,记PO=h,
∵PC⊥PA,PC⊥pB,∴PC⊥平面PAB,
∴PC⊥PM,(M为CO与AB的交点),且∠PMC=α,
cosα=sin∠PCO=
h
PC

同理,cosβ=
h
PA
,cosγ=
h
PB

1
6
PA•PB•PC=VP-ABC=
1
3
(S△AOB+S△BOC+S△COA)h

=
1
3
(
1
2
PA•PB•cosα+
1
2
PB•PCcosβ+
1
2
PB•PCcosγ)h

(
cosα
PC
+
cosβ
PA
+
cosγ
PB
)h=1

∴cos2α+cos2β+cos2γ=1.
点评:本题考查类比的方法猜想三棱锥的类似性质,并证明猜想,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)与直线l:2x+y-2=0交于A,B两点,且
OA
OB
,椭圆C的长轴长是短轴长的2倍.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求椭圆C的方程;
(Ⅲ)若圆Q:(x-m)2+y2=r2在椭圆C的内部,且与直线l相切,求圆Q的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
3x+1
,请用换元法求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是棱CC1的中点,设CP=m(0<m<1).
(Ⅰ)试确定m的值,使直线AP与平面BDD1B1所成角的正切值3
2

(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论;
(Ⅲ)求三棱锥D-APD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
,1),向量
n
是与向量
m
夹角为
π
3
的单位向量.
(1)求向量
n

(2)若向量
n
与向量
q
=(-
3
,1)共线,且
n
p
=(
3
x,
2x+1
x
)的夹角为钝角,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的各项均为正数,前n项和为Sn,对于n∈N*,总有an
2Sn
,an+1成等比数列,a1=1.
(1)求数列{an}的通项公式;
(2)对任意给定的正整数m(m≥2),作数列{bn},使b1=a1,且
bn+1
bn
=
m-n
an+1
(n=1,2,…,m-1),求b1+b2+…+bm
(3)设数列{
1
an
}的前n项和为Tn,求证:
1
2
≤T2n-Tn
3
4
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,N在A1C1上,且满足|A1N|=3|NC1|.
(1)求MN的长;
(2)试判断△MNC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2-x+a(x∈R),其中a为实数.
(Ⅰ)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间与极值;
(Ⅲ)若函数f(x)有且仅有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,M、N分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP=
a
3
,过P,M,N的平面与棱CD交于Q,则PQ=
 

查看答案和解析>>

同步练习册答案