| A. | y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{4}$对称 | |
| B. | y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{2}$对称 | |
| C. | y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{4}$对称 | |
| D. | y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{2}$对称 |
分析 根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数、余弦函数的图象的对称性,
解答 解:把函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的图象上的所有点向左平移$\frac{π}{12}$个单位长度,
得到函数y=g(x)=sin[2(x+$\frac{π}{12}$)+φ]=sin(2x+$\frac{π}{6}$+φ)的图象.
再根据g(-x)=g(x),可得g(x)=sin(2x+$\frac{π}{6}$+φ)为偶函数,故有$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,即+φ=kπ+$\frac{π}{3}$,k∈Z,
故φ=$\frac{π}{3}$,g(x)=sin(2x+$\frac{π}{6}$+$\frac{π}{3}$)=cos2x,
故y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{2}$对称,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100海里 | B. | 100$\sqrt{2}$海里 | C. | 100$\sqrt{3}$海里 | D. | 200海里 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com