精英家教网 > 高中数学 > 题目详情
1.把函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的图象上的所有点向左平移$\frac{π}{12}$个单位长度,得到函数y=g(x)的图象,且g(-x)=g(x),则(  )
A.y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{4}$对称
B.y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{2}$对称
C.y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{4}$对称
D.y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{2}$对称

分析 根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数、余弦函数的图象的对称性,

解答 解:把函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的图象上的所有点向左平移$\frac{π}{12}$个单位长度,
得到函数y=g(x)=sin[2(x+$\frac{π}{12}$)+φ]=sin(2x+$\frac{π}{6}$+φ)的图象.
再根据g(-x)=g(x),可得g(x)=sin(2x+$\frac{π}{6}$+φ)为偶函数,故有$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,即+φ=kπ+$\frac{π}{3}$,k∈Z,
故φ=$\frac{π}{3}$,g(x)=sin(2x+$\frac{π}{6}$+$\frac{π}{3}$)=cos2x,
故y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{2}$对称,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设m,n是两条不同的直线,α,β,γ是三个不同的平面.在下列命题中,正确的是①④(写出所有正确命题的序号)
①若m∥n,n∥α,则m∥α或m?α;
②若m∥α,n∥α,m?β,n?β,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若α∥β,β∥γ,m⊥α,则m⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax-1,(a为实数),g(x)=lnx-x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)求证:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x>0,y>0且满足$\frac{9x}{y}$+$\frac{4y}{x}$≥a2+a恒成立,则实数a的取值范围是[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示,在这些用户中,用电量落在区间[150,250)内的户数为52.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα+sinα=$\frac{1}{2}$,则sin2α=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在某海洋军事演习编队中,指挥舰00号与驱逐舰01号、02号的距离一直保持100海里的距离,当驱逐舰01号在指挥舰00号的北偏东15°,02号在00号南偏东45°时,则驱逐舰01号与02号相距(  )
A.100海里B.100$\sqrt{2}$海里C.100$\sqrt{3}$海里D.200海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若3∈{a+3,2a+1,a2+a+1},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线kx-y+1-k=0恒过定点A,且点A在直线mx+ny-1=0(m>0,n>0)上,则mn的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

查看答案和解析>>

同步练习册答案