精英家教网 > 高中数学 > 题目详情
10.若3∈{a+3,2a+1,a2+a+1},求实数a的值.

分析 已知集合{a+3,2a+1,a2+a+1},三个元素都有可能等于3,所以分三种情况,

解答 解:3∈{a+3,2a+1,a2+a+1}
若a+3=3,则a=0,集合{a+3,2a+1,a2+a+1}={3,1,1},不满足集合的互异性
若2a+1=3,则a=1,集合{a+3,2a+1,a2+a+1}={4,3,3},不满足集合的互异性
若a2+a+1=3,则a=-2或a=1(舍),集合{a+3,2a+1,a2+a+1}={-1,-3,3},满足题意
a=-2

点评 此题主要考查元素与集合的关系以及集合三要素的应用,后面结果必须代入进行验证,这是易错的地方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2x3-3ax2+1,其中a∈R.
(1)当a>0时,讨论函数f(x)在区间(0,+∞)上的单调性;
(2)求函数f(x)在区间[0,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的图象上的所有点向左平移$\frac{π}{12}$个单位长度,得到函数y=g(x)的图象,且g(-x)=g(x),则(  )
A.y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{4}$对称
B.y=g(x)在(0,$\frac{π}{2}}$)单调递增,其图象关于直线x=$\frac{π}{2}$对称
C.y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{4}$对称
D.y=g(x)在(0,$\frac{π}{2}}$)单调递减,其图象关于直线x=$\frac{π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知公差为0的等差数列{an}满足a1=1,且a1,a3-2,a9成等比数列.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,并求使得Sn>$\frac{2}{n}$+$\frac{1}{4}$成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中为偶函数的是(  )
A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=-x2+2x与x轴围成的封闭图形的面积是(  )
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=-8x有相同的焦点,且双曲线过点M(3,$\sqrt{2}$),则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的前n项和为Sn,若a1=1,S4=10,则S6=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2+bx+c(a≠0,b,c∈R),若f(1+x)=f(1-x),f(x)的最小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数y=|f(x)|与y=t相交于4个不同交点,从左到右依次为A,B,C,D,是否存在实数t,使得线段|AB|,|BC|,|CD|能构成锐角三角形,如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案