精英家教网 > 高中数学 > 题目详情
18.已知公差为0的等差数列{an}满足a1=1,且a1,a3-2,a9成等比数列.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,并求使得Sn>$\frac{2}{n}$+$\frac{1}{4}$成立的最小正整数n.

分析 (1)设数列{an}的公差为d,根据等比中项的性质、等差数列的通项公式列出方程,求出d的值,代入等差数列的通项公式求出an
(2)由(1)化简$\frac{1}{{a}_{n}{a}_{n+1}}$,利用裂项相消法求出Sn,化简Sn>$\frac{2}{n}$+$\frac{1}{4}$求出n的范围,即可求出最小正整数n.

解答 解:(1)设数列{an}的公差为d,
由a1,a3-2,a9成等比数列得,(2d-1)2=1×(1+8d),
则d2-3d=0,解得d=3或d=0(舍去),
所以an=1+(n-1)d=3n-2;
(2)由(1)得,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}-\frac{1}{3n+1}$),
则Sn=$\frac{1}{3}$[(1-$\frac{1}{4}$)+($\frac{1}{4}-\frac{1}{7}$)+…+($\frac{1}{3n-2}-\frac{1}{3n+1}$)]
=$\frac{1}{3}$($1-\frac{1}{3n+1}$)=$\frac{n}{3n+1}$,
所以Sn>$\frac{2}{n}$+$\frac{1}{4}$为$\frac{n}{3n+1}$>$\frac{2}{n}$+$\frac{1}{4}$,化简得,
n2-25n-8>0,又n是正整数,解得n≥26,
所以Sn=$\frac{n}{3n+1}$,使得Sn>$\frac{2}{n}$+$\frac{1}{4}$成立的最小正整数n为26.

点评 本题考查等比中项的性质、等差数列的通项公式,以及裂项相消法求数列的和,考查了化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.△ABC 中,∠A:∠B=1:2,∠ACB的平分线 CD把△ABC 的面积分成 3:2 两部分,则cosA等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{4}$或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x>0,y>0且满足$\frac{9x}{y}$+$\frac{4y}{x}$≥a2+a恒成立,则实数a的取值范围是[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα+sinα=$\frac{1}{2}$,则sin2α=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在某海洋军事演习编队中,指挥舰00号与驱逐舰01号、02号的距离一直保持100海里的距离,当驱逐舰01号在指挥舰00号的北偏东15°,02号在00号南偏东45°时,则驱逐舰01号与02号相距(  )
A.100海里B.100$\sqrt{2}$海里C.100$\sqrt{3}$海里D.200海里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=ex+x在[-1,1]上的最大值是e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若3∈{a+3,2a+1,a2+a+1},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两个正变量x,y,满足x+y=4,则使不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立的实数m的取值范围是(-∞,$\frac{9}{4}$],当x=$\frac{4}{3}$,y=$\frac{8}{3}$时等号成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足2Sn=3n+1-3.
(1)求数列{an}的通项公式;
(2)若bn=lgan,设Tn为{bn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案