| A. | 2 | B. | 4 | C. | 8 | D. | 10 |
分析 点A(x,1),B(2,y)均在第一象限,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=1,可得x,y>0,∴2x+y=1.可得$\frac{1}{x}$+$\frac{2}{y}$=(2x+y)$(\frac{1}{x}+\frac{2}{y})$=4+$\frac{y}{x}+\frac{4x}{y}$,再利用基本不等式的性质即可得出.
解答 解:∵点A(x,1),B(2,y)均在第一象限,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=1,
∴x,y>0,∴2x+y=1.
则$\frac{1}{x}$+$\frac{2}{y}$=(2x+y)$(\frac{1}{x}+\frac{2}{y})$=4+$\frac{y}{x}+\frac{4x}{y}$≥4+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$=8.
故选:C.
点评 本题考查了向量数量积运算性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | k=-1且$\overrightarrow{c}$与$\overrightarrow{d}$同向 | B. | k=-1且$\overrightarrow{c}$与$\overrightarrow{d}$反向 | C. | k=1且$\overrightarrow{c}$与$\overrightarrow{d}$同向 | D. | k=1且$\overrightarrow{c}$与$\overrightarrow{d}$反向 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\sqrt{2}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{\sqrt{6}}{2}$ | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com