精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos(ωx+
π
6
)(ω>0,x∈R)的最小正周期为10π.
(1)求函数f(x)的对称轴方程;
(2)设α,β∈[0,
π
2
],f(5α+
3
)=-
6
5
,f(5β-
6
)=
16
17
,求cos(α+β)的值.
考点:函数y=Asin(ωx+φ)的图象变换,两角和与差的余弦函数
专题:三角函数的图像与性质
分析:(1)由周期求得ω=
1
5
,由
1
5
x+
π
6
=kπ,k∈z,求得对称轴方程.
(2)由 α,β∈[0,
π
2
],f(5α+
3
)=-
6
5
,可得sinα 的值,可得cosα的值.由f(5β-
6
)=
16
17
,求得cosβ的值,可得sinβ 的值,从而求得 cos(α+β)=cosαcosβ-sinαsinβ 的值.
解答: 解:(1)由条件可知,T=
ω
=10π,∴ω=
1
5

则由
1
5
x+
π
6
=kπ⇒x=-
5
6
π+5kπ(k∈Z)

故所求对称轴方程为 x=-
6
+5kπ,k∈z.
(2)∵α,β∈[0,
π
2
],f(5α+
3
)=2cos(α+
π
3
+
π
6
)=-2sinα=-
6
5
,可得sinα=
3
5
,∴cosα=
4
5

∵f(5β-
6
)=2cosβ=
16
17
,∴cosβ=
8
17
,∴sinβ=
15
17

∴cos(α+β)=cosαcosβ-sinαsinβ=
4
5
×
8
17
-
3
5
×
15
17
=-
13
85
点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,余弦函数的对称性、周期性、两角和差的余弦公式、同角三角函数的基本关系、诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数a,b∈R,函数f(x)=acos
x
2
3
sin
x
2
+cos
x
2
)+b.
(1)若a>0,求f(x)的单调增区间;
(2)若f(x)的最大值为2,最小值为-4,试确定a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax在(-1,0)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1∈(-1,0),且2an+1=f(an),用数学归纳法证明an∈(-1,0),并判断an+1与an的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是正整数,f(x)=(1+x)m+(1+x)n的展开式中x的系数为7,
(1)试求f(x)中的x2的系数的最小值
(2)对于使f(x)的x2的系数为最小的m,n,求出此时x3的系数
(3)利用上述结果,求f(0.003)的近似值(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,内角A,B,C的对边分别是a,b,c,面积为S.
(1)求证:a2+b2+c2≥4
3
S;
(2)求证:tan
A
2
tan
B
2
,tan
B
2
tan
C
2
,tan
C
2
tan
A
2
中至少有一个不小于
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[-4,0]时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.
(1)试确定A,ω和φ的值;
(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设∠DCO=θ(弧度),试用θ来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解初三学生女生身高情况,某中学对初三女生身高进行了一次抽样调查,根据所得数据整理后列出了频率分布表如下:
组 别 频数 频率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5 m n
合 计 M N
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画频率分布直方图;
(3)若要从中再用分层抽样方法抽出10人作进一步调查,则身高在[153.5,161.5)范围内的应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin
1
2
x+2
3
cos
1
2
x.
(1)求函数f(x)的最小正周期及值域;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
16
-
y2
9
=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是
 

查看答案和解析>>

同步练习册答案