精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin
1
2
x+2
3
cos
1
2
x.
(1)求函数f(x)的最小正周期及值域;
(2)求函数f(x)的单调递增区间.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(1)利用两角和差的正弦公式可得f(x)=4sin(
1
2
x+
π
3
)
.即可得到函数f(x)最小正周期T=
ω
=4π
,再利用正弦函数的值域即可得出函数f(x)的值域.
(2)由2kπ-
π
2
1
2
x+
π
3
≤2kπ+
π
2
,k∈Z
,解得4kπ-
3
≤x≤4kπ+
π
3
,即可得到函数f(x)的单调递增区间.
解答: 解:(1)函数f(x)=2sin
1
2
x+2
3
cos
1
2
x=4(
1
2
sin
1
2
x+
3
2
cos
1
2
x)

f(x)=4sin(
1
2
x+
π
3
)

∴函数f(x)最小正周期T=
ω
=4π

-1≤sin(
1
2
x+
π
3
)≤1

∴函数f(x)的值域为[-4,4]
(2)由2kπ-
π
2
1
2
x+
π
3
≤2kπ+
π
2
,k∈Z

解得4kπ-
3
≤x≤4kπ+
π
3

可得函数f(x)的单调递增区间为:[4kπ-
3
,4kπ+
π
3
],k∈Z
点评:本题考查了三角函数的图象与性质、两角和差的正弦公式,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F为棱AA1上的动点,A1A=4,AB=AC=2.
(1)当F为A1A的中点,求直线BC与平面BFC1所成角的正弦值;
(2)当
AF
FA1
的值为多少时,二面角B-FC1-C的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(ωx+
π
6
)(ω>0,x∈R)的最小正周期为10π.
(1)求函数f(x)的对称轴方程;
(2)设α,β∈[0,
π
2
],f(5α+
3
)=-
6
5
,f(5β-
6
)=
16
17
,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2,
(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知t>0,函数f(x)=|
x-t
x+3t
|.
(1)t=1时,写出f(x)的增区间;
(2)记f(x)在区间[0,6]上的最大值为g(t),求g(t)的表达式;
(3)是否存在t,使函数y=f(x)在区间(0,6)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:在三棱锥O-ABC中,OA⊥BC,OB⊥AC,求证:OC⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,解关于x的不等式x2-(a+
1
a
)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“若xf(x)=x2+px+q,那么|f(1)|,|f(2)|,|f(3)|中至少有一个不小于
1
2
”时,反设正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD─A1B1C1D1中,与侧面对角线AD1成异面直线的棱共有
 
条.

查看答案和解析>>

同步练习册答案