| A. | -$\frac{1}{3}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | 3 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,作出可行域如图,
化目标函数z=2x-3y为直线方程的斜截式y=$\frac{2}{3}$x-$\frac{z}{3}$.
由图可知,当直线y=$\frac{2}{3}$x-$\frac{z}{3}$过点A时,直线在y轴上的截距最小,z最大,$\left\{\begin{array}{l}{x+y=1}\\{x+2y=1}\end{array}\right.$可得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即A(1,0),z=2×1-2×0=2.
故选:C.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4-$\sqrt{3}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\sqrt{7}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com