精英家教网 > 高中数学 > 题目详情
17.设实数x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,则z=2x-3y的最大值为(  )
A.-$\frac{1}{3}$B.-$\frac{1}{2}$C.2D.3

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,作出可行域如图,
化目标函数z=2x-3y为直线方程的斜截式y=$\frac{2}{3}$x-$\frac{z}{3}$.
由图可知,当直线y=$\frac{2}{3}$x-$\frac{z}{3}$过点A时,直线在y轴上的截距最小,z最大,$\left\{\begin{array}{l}{x+y=1}\\{x+2y=1}\end{array}\right.$可得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即A(1,0),z=2×1-2×0=2.
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=2,点P为△ABC内一点,若∠BPC=90°,PB=1,则PA=(  )
A.4-$\sqrt{3}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a${\;}^{\frac{1}{2}}$-a${\;}^{-\frac{1}{2}}$=3,求:
①a+a-1
②a${\;}^{\frac{3}{2}}$-a${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,AB=2,AC=3,BC=$\sqrt{7}$,P,Q为BC边上的动点且BP=CQ,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的最大值为$\frac{19}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲乙两个班级均为40人,进行一门考试后,按学生成绩及格与不及格进行统计,甲班及格人数为36,乙班及格人数为24人,
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.5%的前提下认为“考试成绩与班级有关”?
(n=a+b+c+d)(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,)
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四边形ABCD是边长为2的菱形,∠ABC=60°,M,N分别为BC和PB的中点..
(Ⅰ)证明:平面PBC⊥平面PMA;
(Ⅱ)求二面角N-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中a1=8,a4=2,且满足an+2+an=2an+1
(1)则数列{an}的通项公式为an=-2n+10;
(2)设Sn是数列{|an|}的前n项和,则Sn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,AE=$\frac{1}{2}$CD,侧视图是直角梯形,俯视图是等腰三角形,有关数据如图所示.

(1)求出该几何体的体积;
(2)试问在边CD上是否存在点N,使MN⊥平面BDE?若存在,确定点N的位置(不需证明);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x3+3ax2+3bx在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)的极大值与极小值之差为4.

查看答案和解析>>

同步练习册答案