精英家教网 > 高中数学 > 题目详情

【题目】已知.

(Ⅰ)若是单调递增函数,求实数的取值范围;

(Ⅱ)令,若函数有两个零点,求实数的取值范围.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析: 是单调递增函数,等价于上恒成立,再转化为求最值即可.

有两个零点,可转化为 有两个交点问题,用导数研究函数的增减变化情况即可.

试题解析:(Ⅰ)由题意知

是单调递增函数

上恒成立

(Ⅱ)由题意知

由于,可知

时, ;当时,

上是单调减函数,

上是单调增函数,所以

函数有两个零点

因此实数a的取值范围是

点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是 ,若将f(x)的图象先向右平移 个单位,再向上平移 个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的对称轴及单调区间;
(3)若对任意x∈[0, ],f2(x)﹣(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内,某知名连接店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖的有效展开,参与抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步的统计分析,发现具有线性相关关系.

(1)如从这7天中随便机抽取两天,求至少有1天参加抽奖人数超过10天的概率;

(2)根据上表给出的数据,用最小二乘法,求出的线性回归方程,并估计若该活动持续10天,共有多少名顾客参加抽奖.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长14.8 m的钢条制作一个长方体容器的框架如果所制的底面的一边比另一边长0.5 m那么容器的最大容积为________m3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个.从袋子中不放回地随机抽取小球两个,每次抽取一个球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记事件表示“”,求事件的概率;

(2)在区间内任取两个实数,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点C(t, )(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)当t=2时,求圆C的方程;
(2)求证:△OAB的面积为定值;
(3)设直线y=﹣2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N,数列{bn}满足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

同步练习册答案