精英家教网 > 高中数学 > 题目详情
8.若关于x的不等式x3-3x+3-$\frac{x}{{e}^{x}}$-a≤0有解,其中x≥-2,则实数a的最小值为(  )
A.1-$\frac{1}{e}$B.2-$\frac{2}{e}$C.$\frac{2}{e}$-1D.1+2e2

分析 分离参数,构造函数,利用导数求出函数的最小值即可

解答 解:化简可得a≥x3-3x+3-$\frac{x}{{e}^{x}}$,
设f(x)=x3-3x+3-$\frac{x}{{e}^{x}}$,
∴f′(x)=3x2-3-$\frac{1-x}{{e}^{x}}$,
令f′(x)=0,解得x=1,
故当x∈[-2,1)时,g′(x)<0,
当x∈[1,+∞)时,g′(x)>0,
故f(x)在[-2,1)上是减函数,在[1,+∞)上是增函数;
故fmin(x)=g(1)=1-3+3-$\frac{1}{e}$=1-$\frac{1}{e}$,
故选:A.

点评 本题考查了不等式的化简与应用,同时考查了导数的综合应用及存在性问题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设Sn,Tn分别是等差数列{an}、{bn}的前n项和,对n∈N*均有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{4n+k}$,若已知$\frac{{a}_{5}}{{b}_{5}}$=$\frac{8}{9}$,则k=36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a$是单位向量,向量$\overrightarrow b=({2,2\sqrt{3}})$,若$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,则$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$确定的平面区域记为Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF,现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是①或③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z(2-i)=10+5i(i为虚数单位),则|z|=(  )
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ )(0<φ<π)的图象向左平移$\frac{π}{4}$个单位后,得到函数的图象关于点{$\frac{π}{2}$,0}对称,则φ等于(  )
A.-$\frac{π}{6}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|4x2≤1},B={x|lnx<0},则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$[\frac{1}{2},1)$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为120°,那么$|{\overrightarrow a+2\overrightarrow b}|$=(  )
A.1B.$\sqrt{3}$C.$2+\sqrt{3}$D.7

查看答案和解析>>

同步练习册答案