| A. | 1 | B. | $\sqrt{3}$ | C. | $2+\sqrt{3}$ | D. | 7 |
分析 由条件利用两个向量的数量积的定义求得$\overrightarrow{a}•\overrightarrow{b}$,再利用求向量的模的方法,求出$|{\overrightarrow a+2\overrightarrow b}|$的值.
解答 解:∵$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为120°,∴$\overrightarrow{a}•\overrightarrow{b}$=1•1•cos120°=-$\frac{1}{2}$,
∴$|{\overrightarrow a+2\overrightarrow b}|$=$\sqrt{{(\overrightarrow{a}+2\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{4\overrightarrow{b}}^{2}}$=$\sqrt{1-2+4}$=$\sqrt{3}$,
故选:B.
点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1-$\frac{1}{e}$ | B. | 2-$\frac{2}{e}$ | C. | $\frac{2}{e}$-1 | D. | 1+2e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|-1<x≤1} | D. | {x|-1<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i | B. | -i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | bn=n-1 | B. | bn=2n-1 | C. | bn=n+1 | D. | bn=2n+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com