精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|-1<x<3},B={x|y=$\sqrt{1-x}$},则A∩(∁RB)=(  )
A.{x|1<x<3}B.{x|1≤x<3}C.{x|-1<x≤1}D.{x|-1<x<1}

分析 根据集合A、B,求出∁RB,再求A∩(∁RB)即可.

解答 解:∵集合A={x|-1<x<3},
B={x|y=$\sqrt{1-x}$}={x|1-x≥0}={x|x≤1},
∴∁RB={x|x>1},
∴A∩(∁RB)={x|1<x<3}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$确定的平面区域记为Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|4x2≤1},B={x|lnx<0},则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$[\frac{1}{2},1)$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC 中,∠C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从集合{0,1,2,3}的所有非空子集中,等可能的取出一个,则取出的非空子集中所有元素之和恰为5的概率为$\frac{2}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的单调递增区间是(  )
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为120°,那么$|{\overrightarrow a+2\overrightarrow b}|$=(  )
A.1B.$\sqrt{3}$C.$2+\sqrt{3}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于同一平面的单位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,若$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$(\overrightarrow a-\overrightarrow b)•(\overrightarrow a-2\overrightarrow c)$的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,E是PC的中点,∠DAC=∠AOB.
(I)求证:BE∥平面PAD;
(2)求证:平面BOE⊥平面PCD.

查看答案和解析>>

同步练习册答案