精英家教网 > 高中数学 > 题目详情
17.设集合A={x|4x2≤1},B={x|lnx<0},则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$[\frac{1}{2},1)$D.$(0,\frac{1}{2}]$

分析 分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:x2≤$\frac{1}{4}$,
解得:-$\frac{1}{2}$≤x≤$\frac{1}{2}$,即A=[-$\frac{1}{2}$,$\frac{1}{2}$],
由B中lnx<0=ln1,得到0<x<1,即B=(0,1),
则A∩B=(0,$\frac{1}{2}$],
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.计算sin150°cos30°的值为$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若关于x的不等式x3-3x+3-$\frac{x}{{e}^{x}}$-a≤0有解,其中x≥-2,则实数a的最小值为(  )
A.1-$\frac{1}{e}$B.2-$\frac{2}{e}$C.$\frac{2}{e}$-1D.1+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若x,y满足$\left\{\begin{array}{l}{x+y-3≥0}\\{kx-y+3≥0}\\{y≥0}\\{\;}\end{array}\right.$,且当z=y-x的最小值为-12,则k的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“?x>0,使得a+x≤b”是“a<b”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不比必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合U=R,集合A={x|x≥1},B={x|0<x<4},则(∁UA)∩B=(  )
A.{x|x<1或x≥4}B.{x|0<x<1}C.{x|1≤x<4}D.{x|x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在边长为2的菱形ABCD中,∠ABC=$\frac{π}{3}$,点P是线段BD的一个三等分点,则$\overrightarrow{AP}$•$\overrightarrow{AC}$等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|-1<x<3},B={x|y=$\sqrt{1-x}$},则A∩(∁RB)=(  )
A.{x|1<x<3}B.{x|1≤x<3}C.{x|-1<x≤1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中正确的是②③④.(填上你认为正确的所有命题的序号)
①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;
②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;
③球O与棱长为a的正四面体各面都相切,则该球的表面积为$\frac{π}{6}$a2
④三棱锥P-ABC中,PA⊥BC,PB⊥AC,则PC⊥AB.

查看答案和解析>>

同步练习册答案