精英家教网 > 高中数学 > 题目详情
2.已知集合U=R,集合A={x|x≥1},B={x|0<x<4},则(∁UA)∩B=(  )
A.{x|x<1或x≥4}B.{x|0<x<1}C.{x|1≤x<4}D.{x|x<4}

分析 根据补集与交集的定义,进行运算即可.

解答 解:∵集合U=R,集合A={x|x≥1},B={x|0<x<4},
∴∁UA={x|x<1}
∴(∁UA)∩B={x|0<x<1}.
故选:B.

点评 本题考查了集合的定义与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,则实数x的值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z(2-i)=10+5i(i为虚数单位),则|z|=(  )
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求证:平面ACC1A1⊥平面A1BD;
(2)当BC⊥CD时,直线BC与平面A1BD所成的角能否为45°?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|4x2≤1},B={x|lnx<0},则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$[\frac{1}{2},1)$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={0,1,2},B={m,3,4},若A∩B={2},则实数m=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC 中,∠C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的单调递增区间是(  )
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年1月1日,我国实施“全面二孩”政策,中国社会科学院在某地(已婚男性约15000人)随机抽取了150名已婚男性,其中愿意生育二孩的有100名,经统计,该100名男性的年龄情况对应的频率分布直方图如下;
(1)求这100名已婚男性的年龄平均值$\overline{x}$和样本方差s2(同组数据用区间的中点值代替,结果精确到个位);
(2)(Ⅰ)试估计该地愿意生育二孩的已婚男性人数;
     (Ⅱ)由直方图可以认为,愿意生育二孩的已婚男性的年龄ξ服从正态分布N(μ,δ2),其中μ近似样本的平均值$\overline{x}$,δ2近似为样本的方差s2,试问:该地愿意生育二孩且处于较佳的生育年龄ξ(ξ∈(26,31))的总人数约为多少?(结果精确到个位)
附:若ξ~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.

查看答案和解析>>

同步练习册答案