| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
分析 作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.
解答
解:由z=y-x得y=x+z,
要使z=y-x的最小值为-12,
即y=x-12,
则不等式对应的区域在y=x-12的上方,
先作出$\left\{\begin{array}{l}{y≥0}\\{x+y-3≥0}\\{y=x-12}\end{array}\right.$对应的图象,
由$\left\{\begin{array}{l}{y=0}\\{y=x-12}\end{array}\right.$得$\left\{\begin{array}{l}{x=12}\\{y=0}\end{array}\right.$,即C(12,0),
同时C(12,0)也在直线kx-y+3=0上,
则12k+3=0,得k=-$\frac{1}{4}$,
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},\frac{1}{2})$ | B. | $(0,\frac{1}{2})$ | C. | $[\frac{1}{2},1)$ | D. | $(0,\frac{1}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com