【题目】在中,的角平分线所在直线为,边的高线所在直线为,边的高线所在直线为,
(1)求直线的方程;
(2)求直线的方程;
(3)求直线的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线,圆.
(1)求的取值范围,并求出圆心坐标;
(2)有一动圆的半径为,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.
(1)求椭圆的方程;
(2)过椭圆左顶点做两条互相垂直的直线,,且分别交椭圆于,两点(,不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不重合的两条直线,和不重合的两个平面,,下面的几个命题:①若,且,则;②若,与平面成等角,则;③若,,且,则;④若,,则;⑤若,异面,且,均与平面和平行,则.在这5个命题中,真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,底面ABCD,四边形ABCD是边长为1的正方形,且,点M是SD的中点.请用空间向量的知识解答下列问题:
(1)求证:;
(2)求平面SAB与平面SCD夹角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).
(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com