精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2-b2=
1
2
ac,则cosB的值为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5
考点:余弦定理
专题:解三角形
分析:利用余弦定理表示出cosB,将已知等式代入计算求出cosB的值即可.
解答: 解:∵△ABC中,a2+c2-b2=
1
2
ac,
∴由余弦定理得:cosB=
a2+c2-b2
2ac
=
1
4

故选:C.
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知0≤φ<π,函数f(x)=
3
2
cos(2x+φ)+sin2x.
(Ⅰ)若φ=
π
6
,求f(x)的值域;
(Ⅱ)若f(x)的最大值是
3
2
,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a,b,c,若acosC=b,则△ABC的形状是(  )
A、钝角三角形
B、锐角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

公司现有青年人160人,中年人30人,老年人10人,要从其中抽取20个人进行身体健康检查,则宜采用的抽样方法是(  )
A、抽签法B、随机数法
C、系统抽样法D、分层抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(2,4),则|
a
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设-2≤x≤2,则函数y=4x-2×2x+5的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|0≤x≤3},B={y|0≤y≤3},下列从集合A到集合B的对应关系不是映射的是(  )
A、f:x→y=
1
2
x2
B、f:x→y=
1
3
x2
C、f:x→y=
1
4
x2
D、f:x→y=
1
5
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(m2-m-1)xm是幂函数,则f(x)一定(  )
A、是偶函数
B、是奇函数
C、在x∈(-∞,0)上单调递减
D、在x∈(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-4<0},集合B={x|
x-2
x+4
<0}

(1)求A∩B,A∪B;
(2)求(∁RA)∩B.

查看答案和解析>>

同步练习册答案